Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center.
نویسندگان
چکیده
Light-induced structural changes in the bacterial reaction center were studied by a time-resolved crystallographic experiment. Crystals of protein from Blastochloris viridis (formerly Rhodopseudomonas viridis) were reconstituted with ubiquinone and analyzed by monochromatic and Laue diffraction, in the dark and 3 ms after illuminating the crystal with a pulsed laser (630 nm, 3 mJ/pulse, 7 ns duration). Refinement of monochromatic data shows that ubiquinone binds only in the "proximal" Q(B) binding site. No significant structural difference was observed between the light and dark datasets; in particular, no quinone motion was detected. This result may be reconciled with previous studies by postulating equilibration of the "distal" and "proximal" binding sites upon extended dark adaption, and in which movement of ubiquinone is not the conformational gate for the first electron transfer between Q(A) and Q(B).
منابع مشابه
Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction.
Photosynthetic reaction centers convert the energy content of light into a transmembrane potential difference and so provide the major pathway for energy input into the biosphere. We applied time-resolved Laue diffraction to study light-induced conformational changes in the photosynthetic reaction center complex of Blastochloris viridis. The side chain of TyrL162, which lies adjacent to the spe...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملTime Resolved Absorption Spectroscopy for the Study of Electron Transfer Processes in Photosynthetic Systems
Transient absorption spectroscopy was used to study light induced electron transfer processes in Type 1 photosynthetic reaction centers. Flash induced absorption changes were probed at 800, 703 and 487 nm, and on multiple timescales from nanoseconds to tens of milliseconds. Both wild type and menB mutant photosystem I reaction centers from the cyanobacterium Synechocystis sp. PCC 6803 were stud...
متن کاملFourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation
The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC), which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR) difference spectroscopy has been successfully u...
متن کاملTime-resolved dissociation of the light-harvesting 1 complex of Rhodospirillum rubrum, studied by infrared laser temperature jump.
For the first time, data are presented on the time-resolved disassembly reaction of a highly organized membrane protein complex in vitro. The photosynthetic core light-harvesting complex of the bacterial strain Rhodospirillum rubrum G9 consists of 12-16 dimeric subunits that in vivo are associated with the photosynthetic reaction center in a ringlike manner. Isolated in a detergent solution, it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2004